Sie sind hier: 

 

 

Diese Seite ist neu unter http://www.heliflight.ch erreichbar!

 

Aerodynamische Grundlagen

Bevor wir in die Aerodynamik der Helikopter einsteigen können, sollten wir einige grundlegende aerodynamischen Prinzipien kennen.

Damit die Flugzeuge, die "schwerer als Luft" sind vom Boden abheben können, muss eine Kraft nach oben wirken, die mindestens so gross ist, wie das Gewicht des Flugzeuges. Diese Kraft nennt man Auftrieb und wird durch die Tragflächen erzeugt.
Die Tragflächen oder Flügel haben im Querschnitt eine bestimmte Form, das Profil. Es gibt eine Vielzahl verschiedener Profilarten, je nachdem welche Flugeigenschaften ein Flugzeug erreichen soll.
Bewegt sich nun eine Tragfläche vorwärts, teilt das Profil den Luftstrom in einen unteren und einen oberen Teil (Abb 1).

profil_strom.GIF (4334 Byte)
Abb 1

Da die Luft durch die Wölbung um das Profil verdrängt wird, muss sie einen "weiteren Weg" zurücklegen, wodurch sich die Strömungsgeschwindigkeit erhöht. Nach dem Gesetz der Strömungslehre (Bernoulli-Gleichung) führt die Geschwindigkeitszunahme zu einer Reduktion des Drucks. Es entsteht auf der Oberfläche des Flügels ein "Sog" (Abb 2). Da die obere und untere Seite des Profils eine unterschiedliche Wölbung aufweisen, wird auch ein unterschiedlicher "Sog" erzeugt.

profil_druck.GIF (6123 Byte)
Abb 2

Bei einem vollsymetrischen Profil (hier ist ein halbsymmetrisches dargestellt) ist der Unterdruck auf der Flügeloberseite genau gleich gross wie auf der Unterseite.
Diese rein aerodynamischen Kräfte reichen noch nicht aus, um ein Flugzeug zum Fliegen zu bringen. Ein Flügel muss im Luftstrom leicht angestellt werden, wodurch die Luft nach unten abgelenkt wird, was zu einem Überdruck auf der Flügelunterseite führt, welcher den Gesamtauftrieb erhöht (Abb 3).

profil_strom02.gif (15224 Byte)
Abb 3

Dieser Anstellwinkel bewirkt zusätzlich eine Erhöhung des Unterdrucks auf der Oberseite, da die Luft einen noch weiteren Weg zurücklegen muss und dadurch stärker beschleunigt wird.
Durch die Anstellung des Flügels wird aber auch der Luftwiderstand erhöht, was mit einer grösseren Leistung für den Vortrieb kompensiert werden muss.
Grundsätzlich kann gesagt werden, dass der Auftrieb grösser wird je schneller sich das Flugzeug vorwärts bewegt. Gleichzeitig wird aber auch der Luftwiederstand erhöht. Aus diesem Grund besitzen Flugzeuge welche nur langsam fliegen dicke Profile, bei sehr schnellen Flugzeugen reichen schlanke Profile für die Erzeugung des Auftriebs aus.
Der Anstellwinkel und die Geschwindigkeit können aber nicht beliebig erhöht werden da die Luftströmung auf der Oberseite abreissen kann. Das heisst die Strömung fliesst nicht mehr entlang dem Profil, sondern bildet Wirbel (Abb 4).

profil_strom03.gif (16956 Byte)
Abb 4

Zuerst entstehen die Wirbel an der Austrittskante. Wird der Anstellwinkel weiter erhöht, bilden sich immer mehr Wirbel Richtung Eintrittskante, bis der Auftrieb nicht mehr ausreicht um das Flugzeug in der Luft zu halten. Dieser Flugzustand wird als Stall (engl.) bezeichnet und tritt vor allem dann auf, wenn das Flugzeug zu langsam fliegt.
Sobald die Strömung wieder sauber am Profil entlang fliesst, ist auch der notwendige Auftrieb wieder vorhanden und das Flugzeug fliegt wieder.

nach oben

 

Sollte kein Menu sichtbar sein, bitte hier klicken:
HOME